Experiments in Fluids 7, 412 420 (1989)

Expeﬁments in Fluids

© Springer-Verlag 1989

The shadowgraph method in convection experiments

S. Rasenat, G. Hartung, B. L. Winkler and 1. Rehberg

Physikalisches Institut der Universitit Bayreuth, D-8580 Bayreuth, F. R. Germany

Abstract. The shadowgraph method is applied to thermal convec-
tion experiments and electro-hydrodynamic convection (EHC) 1n
nematic liquid crystals. In both cases convection leads to a spatially
periodic field of the refractive index causing a spatially periodic
intensity modulation of parallel light passing the cell. Close to the
onset of convection the temperature or director field is given by
linear stability analysis. Knowing these functions the determination
of their amplitudes becomes possible by means of the shadowgraph
method. The method is demostrated using various examples of ther-
mal and EHC convection experiments.

1 Introduction

Homogeneous systems driven from equilibrium can develop
a spatial structure when a threshold value of an external
forcing parameter is exceeded. A popular example in fluid
dynamics is the Rayleigh-Benard convection — fluid heated
from below and cooled from above gives rise to a convective
flow when the temperature difference exceeds a critical value
(for reviews see Busse 1978, 1980). A less known example is
the onset of convection in a nematic liguid crystal when the
fluid is embedded between two parallel electrodes. If the
AC-Voltage applied to the electrodes exceeds a critical value,
convection sets in the form of parallel rolls — the so called
Williams domains (for reviews, see Goossens 1978; Blinov
1983). Both systems are often used for experimental work
dealing with spatio-temporal complexity and chaos presum-
ably because of their simplicity — in both cases no mechani-
cally moving parts are needed to drive the flow and the
external control parameter (temperature difference or volt-
age) can be adjusted with a resolution of more than 10 > of
the critical value. The most popular measuring technique to
explore the convection patterns seems to be the shadow-
graph method (Ahlers et al. 1985; Heutmaker et al. 1985;
Steinberg et al. 1986; Kolodner et al. 1986 for examples in
thermal convection) (Joets and Ribotta 1986; Lowe et al.
1986 for examples in EHC). This popularity stems from
simplicity: all that is needed is parallel light and a camera.
The sensitivity of the method, however, allows the observa-

tion of the onset of convection even in gases (Pocheau et al.
1985).

The principle of the method used in this paper 1s shown
in Fig. 1. Parallel light is sent through the convection pat-
tern, and the image of the convection pattern is obtained by
a camera or photodiodes positioned at some distance from
the cell. With the experimental setup shown in Fig. 1 only
quasi one-dimensional patterns as those in rectangular
boxes or narrow convection channels (Rehberg et al. 1987)
can be observed. In order to make two-dimensional patterns
visible, the light is sent vertically through the cell. The sensi-
tivity of the shadowgraph method permits a visualization of
the flow pattern close to the critical point for the onset of
convection. Here we concern ourselves with measurements
in the neighbourhood of this point. In Sect. 2 we will cal-
culate the thermal convection paths for light passing
through the cell and the light intensity at several distances
from the cell. In Sect. 3 the same is done for electrohydrody-
namic convection in liquid crystal layers.

Fig. 1. Principle of the shadowgraph method: The incoming paral-
lel light is deflected according to the gradient of the refraction index;
d is the thickness of the cell, z the maximum deflection angle of the
light; at the observation line x = x, the intensity is modulated be-
cause the light sheet of thickness Ay,., bounded by y,, and yg,, 18
transformed into a sheet of thickness 4y, =y,,-»,,: the transfor-
mation from y,, to y,, and y,, to y,, is given by Eq. (6)
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2 Thermal convection

If a horizontal liquid layer is heated from below, convection
rolls arise above a critical temperature gradient. The gener-
ated horizontal temperature gradient close to the critical
point 1s proportional to a sine. Light which is sent from the
side through the cell is deflected in a horizontal direction at
this temperature gradient. The shadowgraph method ap-
plied to thermal convection therefore yields information
about the temperature field of the flow. How to get the
absolute temperature gradient from the observed shadow-
graph pattern is shown in this chapter. The pattern is calcu-
lated at the line x = x|, z = 0(Fig. 1) where the light intensity
1s measured.

2.1 The path of the light for thermal convection

The coordinate system used for the calculations is shown in
Fig. 1. The temperature in the x-direction is assumed to be
constant. The y-dependence is T= T, + T cos(k - y) with k
being the wave number of the convection pattern, and T the
amplitude of the temperature variation stemming from the
convection. Close to the middle of the cell where the
z-dependence is 97/0z =0 the problem can be treated as
one-dimensional. The relationship between density and tem-
perature is p = p, - (1 — (T— T,) - ) with y being the thermal
expansion coefficient. With the index of refraction being
proportional to the density, the y-dependence is given by
n(y)=ny —T-ny-y-cos(k-y). The principle of Fermat,
nds = extremum, leads to the Euler-Lagrange equation (1)
for the path of the light beam y(x) in the cell

C-(1+yH"2=n(y). (1)

We expand this equation up to second order terms in
y(x) — y(0), 1ts derivative y" and the derivative of the index
of refraction. This approximation holds for small horizontal
temperature gradients which is fulfilled close to the onset of
convection. This means that we can only calculate the path
in the cell for small deflections between in- and outgoing
light beams. The constant C is determined by the boundary
condition y'(0) =0 for a perpendicular light beam and be-
comes C = n(y,) where y, = y(0). With a Taylor expansion
for n and the lhs of Eq. (1) we get in second order:

an
n(ye) + 3y

(—=yo)=n(yo)- (1 +5-y?). (2)

Yo

Separation of the variables and integration leads to:
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To determine the light intensity at x, we need the angle of the
light beam at x = J. We get

0
¥o n {.}U} +

2

y(x) + Yo (3)

: on
tan (o) = y'(d) = —
cy

(4)
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Inserting the expressions for n(y,) and %f in Eq. (4) leads
to: .

5Ty -k-sintky o
tan(x) = ] { }D]*ﬁ’ﬁ*}'*k-T'Slﬂik'F@}

DL T o y - cos(k y,)
+1.5-92 k-T2 -sin(2-k-y,). (3)

The second term on the rhs of Eq. (5) is much smaller than
the first term because close to the critical point T - y is small
(for a fluid layer of thickness 10 mm in the range of 10~ %).
Therefore we take for the angle of deflection furthermore
only the sine term of Eq. (5). Now we can calculate the light
intensity at a distance x, from the cell.

2.2 Caleulation of the light intensity at a distance x,

The light intensity I at x =0 is assumed to be I, = constant.

The light intensity at the observation line x = x, (Fig. 1) is
proportional to the ratio between the plane 4y, at x = 0 and
its transformed plane Ay, at x = x,. The transformation
from Ay, to Ay, is composed of the light path inside the cell
and the deflection with the angle o at x = to x,. The shad-
owgraph pattern has been measured at a distance x, from
the cell being large compared with the thickness d(x, > d).
Therefore we can neglect the small distortion inside the cell.
With the calculated deflection angle from Eq. (5) close to the
critical point, the transformation of y, to y, = y(x,) is given
by:

Y= yo+0-7-k-T- Xy SN (K yo) = yo+ 0o X1 sin(k yg). (6)
The hLght intensity is proportional to Ady,/dy,. With

Vo=/[(y,) being the inverse function from Eq. (6) we get for
the light intensity at the point of observation

I(x,, 1) =1 (ﬁyl)_l > i
_1: ] ; — - e — ‘ a
Y1 . a}’.:: 1-|-G'fu‘xi'k"‘:ﬂs[k'-f{yl}]

f(y,) cannot be calculated analytically. We get the inverse

function of Eq.(6) numerically with a Newton-Raphson

method. Some intensity functions calculated with Eq. (7 a)

are shown in Fig. 2. ;
The denominator of Eq. (7a) can be zero for x, > o

1 ; ; A
At x, = =1 W& get the first caustic, a point with infinite
-

intensity at k-f(;-'1]=(2ﬂ+]]-g.

Above this distance

Eq.(7a) has at least two points of infinite intensity within
one period. The location of these singularities in the
x — y-plane is shown in Fig, 3.

For finite diodes the singularities along the caustic lines
change into points of high intensities. If we take into account
the thickness A of the diode we get for the light intensity

‘I py+A/2
frd[-‘:lsh}:j' I(x,,y,)dy,
y1—A4/2
1 .
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Fig. 2. Intensity lines for an infinitely thin and for a finite diode
(4 =0.01) according to the Eqgs. (7a) and (7 b); the parameter is the
distance x, given in units of the distance from the first caustic; for
values up to x, =0.8 the difference between the two lines is smaller
than 1%, making the second line invisible: at x, =0.9 the difference
becomes visible; the arrow points to the maximum of the intensity
obtained with the finite diode size
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Fig. 3. The location of the singularitics of Eq. (7a) in the x — y-plane
are indicated by solid lines; the position along the cell is measured
in units of the wavelength, the position along the x-direction in units
of the distance between cell and first caustic; the focal points on the
right hand side correspond to the real ones; focussing on the imagi-
nary images on the left hand side with lenses might save space in the
experimental setup:; measuring the distance between the real and
imaginary focal points gives quantitative information about the
refractive index field (Fig. 15)
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Fig. 4. The contrast I, —1 .. in dependence on the distance be-
tween the observation line and the cell; the distance is scaled by the
distance between the cell and the first caustic at x, =1; using a finite
diode, the thickness leads to a maximum of contrast at a position x,
shghtly larger than 1; the sccond peak at x;, =4.7 is caused by the
crossing of two caustic lines (Fig. 3)
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where we have assumed the sensitivity of the diode to be
contant within the whole thickness 4. The shape of the light
intensity for different distances x, behind the threshold is
also included in Fig. 2. It has been calculated with Eq. (7b)
with 4 =0.01 and a wavelength of 1. There is no visible
difference, however, between the intensities obtained with an
infinitely small diode (7 a) and the one obtained by a diode
of thickness 0.01, provided that the observation line is far
enough from the first focal point. Thus Eq. (7 a) can be used
to fit the experimental data.

Especially for the wavelength measurements of the con-
vection patterns it 1S important to get a high contrast of the
image. Figure 4 shows the contrast defined as the difference
between the maximum and the minimum intensity as a func-
tion of the distance from the cell. It can be seen that the ideal
distance x, 1s close to the first caustic.

In the experimental part Eq. (7a) will be used to fit the
experimental data. From the parameter o, we cant get the
temperature gradient in horizontal direction of the cell.
A comparison ol the parameter z, with Eq. (5) yields
%y =07 k- T.If we take into account the refraction of the
light beam at the transition from liquid to air at x = ¢ the
amplitude of the temperature modulation with a mean index
of refraction 7 of the Muid would be:

f“r:{u-{k-;hrﬁ-ﬁ}_l, (&)

2.3 Experimental examples for thermal convection

The experimental data for the first two experiments de-
scribed here in have been obtained by using photodiodes
moved along the x-direction at z =0 (Fig. 1). The photo-
voltage i1s proportional to the light intensity.

Thermal convection in a channel with “ramped bound-
artes” leads to almost perfect selection of the wavelength of
the convection rolls. The detailed geometry of our convec-
tion channel (3 mm high, 1.5 mm thick, 24 mm long) is given
clsewhere (Rehberg et al. 1987). Purified cyclohexan was
used as the working fluid in this experiment. To obtain the
wavelength and the critical temperature we measured the
light intensity at a distance of 70 cm behind the cell. A pho-
todiode, moved along the x-axis by means of a stepping
motor, measures the light intensity. First the intensity i1s
measured in the absence of convection — this intensity profile
1s then used to normalize the other measurements, thus get-
ting rid of light inhomogeneities. The measured light inten-
sities together with a least square fit to Eq. (7 a) 1s shown in
Fig. 5. The dellection angle «, obtained from this fit shows
the expected square root dependence close to the critical
point as indicated in Fig. 6. The wavelength obtained from
the fit 1s presented elsewhere (Rehberg and Riecke 1987).

The second experiment deals with convection patterns in
two horizontal layers of immiscible iquids lying one upon
the other (Rasenat 1987). Details of the experimental setup
will be given elsewhere (Rasenat et al. 1989). The dimensions
of the convection box are 12 mm - 20 mm - 80 mm. A 6 mm
layer of ethyleneglycol was covered with a 6 mm layer of oil.
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Intensity larb. units)

Position {mm)

Fig. 5. Shadowgraphic image of convection rolls in a “ramped”
convection channel; the labels indicate the temperature difference
between top and bottom; the points are measurements obtained by
a photodiode, the solid line is a fit to Eq.(7a); the fit appears
satisfactorily up to about 4 K, but above this temperature difference
higher harmonics appear
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Fig. 6. The deflection angle in dependence on the temperature dif-
[erence as extracted from Fig. 5; the solid line is a fit to a square root
law

The same procedure as in the first experiment was used to
obtlain intensity measurements, with the only difference that
two diodes were used instead of one. Figure 7 presents the
intensities obtained by the two diodes. Separated convection
rolls appear in both layers. The deflection angle =, in depen-
dence on the temperature difference (Fig. 8) shows a square
root dependence for only the layer that gets first unstable.
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Fig. 7. Shadowgraphic image of double layer convection: the trian-
gles are measurements in the upper oil layer, the crosses are ob-
tained from measurements in the lower layer of ethyleneglycol; the
parameter 1s the temperature difference (K) between the top and
bottom plate
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Fig. 8. The deflection angle in dependence on the temperature dif-
ference as extracted from Fig. 7; the solid line is a fit to a square root
law

The other one is only passively driven at the beginning of
convection, thus the light intensity modulation is very small
here. For ethyleneglycol a deflection angle of 0.01° corre-
sponds to a horizontal temperature modulation with an
amplitude T of 0.02 K.
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Fig. 9. Shadowgraphic image for convection in an annulus with
harmonic spatial boundaries; the labels indicate the position of the
measuring photodiode in degrees with respect to the maximum
height of the upper boundary; the maximum height of the lower
boundary 1s at 90

The third experiment deals with convection in an annular
cell (inner diameter 22 mm, outer diameter 31 mm.) The
height of the cell is 10 mm. The top and bottom boundaries
are sine shaped with an amplitude of 1 mm (Hartung 1988).
The fluid used in this experiment was olive oil. The position
of the maximum height of the lower boundary with respect
to the maximum height of the upper boundary is 90°. The
convection patterns in such an annular cell are not fixed in
their position — induced by non-Boussinesq effects they drift.
This drift 1s demonstrated in Fig. 9. Here the intensity mea-
sured by 8 photodiodes at fixed positions is plotted. Equa-
tion (7 a) can be used to fit the experimental data, provided
that the wave number k is replaced by a frequency w.

3 Electrohydrodynamic convection

If a critical voltage applied to a layer of a nematic liquid
crystal (Fig. 10) is exceeded, a convection pattern formed of
parallel rolls similar to Rayleigh-Benard convection is pro-
duced — the Williams domains (Goossens 1978). In the con-
vective state the velocity field in the layer and the director
angle are spatially periodic with the same wavelength. From
an optical point of view a nematic i1s an uniaxial crystal
showing birefringence (Born 1932). Light polarized in the
direction of the director 1s deflected when passing the cell
(Penz 1970; Hirata and Tako 1982). A microscope focussed
to a plane close above the liquid is used to visualize the
resulting shadowgraph image. How to get the distortion
angle of the director form this image is shown in this section.
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Fig. 10. Experimental setup for electro-hydrodynamic liquid crys-
tal convection; an AC-voltage 1s applied to glass plates coated with
a conductor; the convection rolls and the tilt angle of the director
is shown schematically; the light path has been calculated numeri-
cally; the dashed lines point to the virtual images; the labels 1 and
2 indicate the two real foci and 3 the virtual focus

3.1 The path of the light in liguid crystals

A model of the cell is shown in Fig. 10. To derive some
analytic results of the path of the light y(x) passing the cell,
we will use a simplified model for the angle ¢ of the director
(Fig. 10), namely

fl =0, sin (g : x) -cos(k - y).

This simple y-dependence (Penz 1970) is very close to the
correct eigenfunction of the linear stability analysis, which
can be obtained only numerically (Thom 1988; Thom and
Zimmermann 1988; Bodenschatz et al. 1988). The index of
refraction n in an uniaxial crystal for a light beam polarized
in the x — y-plane is given by:

n(x, v, ¥') = (ng - sin®(f) +n; - cos* ()2 (9)

ng 1s the index of refraction of the ordinary and n, of the
extraordinary beam. f measures the angle between the light
beam and the optical axis (director) and is given by
f=—80(x, y)+arctan(y’). The principle of Fermat now
yields a more complicated Euler-Lagrange equation than
for thermal convection because n(x, y, v') now depends not
only on x but also on y and its first derivative y":

of _f _&f ¥
. oy
oy oydx 0Oydy - 0y

-y’ =0 (10)

with f(x,y,y) = n(x,y,y) - (1 +y%)V% Again, we consider
small amplitude convection in a small region above the
critical point where # and the deflection y — y, and its deriva-
tives remain small. f 1s expanded into a Taylor series up to
the second order in the small terms:

Jr— 1 1 1 [ : H}l 1 &
"'-"”-}. A S = . AR = 1
] =n, —I—2 "= () +2 n,:y
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with
i = (ng—n2)n? .

If we insert this in Eq. (10) and neglect all terms higher than
second order we get

; ! S - S
-0 —+i- ——(FH+1):y"=0. (11)
ay Ox

Now we make use of cos(ky) = cos(ky,—k(y, — ) =
cos (K yo)—k(y—y,) - sin(k yy) to expand @ with respect to
¥y—JYo, and we insert the resulting expression in Eq. (11).
Again neglecting terms higher than second order we get a
linear, inhomogeneous differential equation of the Hill’s
kind

2= O -y - (% - .‘s:)—ﬂﬂ + Z A4 * COS (; . .r) : (12)
{

with z, a,, a,, a; being defined by

a, 1 :
= Y=Ya=——, @i = - -k-cﬂs[k}!ﬂ}-sm{kygL
as, 147
7 T (k yo) A -k el
(il = - = — « COS{K Vi), " = *SINIK Vgl .
> 1+A O 0 > 1+n ) 0

To solve Eq. (12), we make a series ansatz for z up to second
order terms in 0: z=z, + 6, - z, + 0% - z;. Inserting this in
Eqg. (12) we get for the different orders:

5

— —= (which fulfills y (0) = y,,, y' (0)=0).
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The solution y(x) up to the second order in 6, is then:
Y(x)=yo+0, - 2,465 - z3. To calculate the deflection angle
« at x=0 we need the first derivative of y(x) at x=4. We
get:

1 1 A
(f)=tanae=62- — . _ . k-6-[—1+
y'(©) an & ﬂ 1+n 4 ( )

. sin(2k yg) . (13)
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Fig. 11. Intensity calculated as a function of the distance from the
top of the convection cell; the labels correspond to the distance from
the cell in units of the cell height

Equation (13) gives the deflection angle of a light beam at
x=o0 which enters the cell at x=0 and y,. The deflection
angle has halfl the period of the convection pattern and is
only in second and higher orders in @, unequal to zero. This
result i1s not surprising because the dependence on the index
of refraction is only quadratic to the angle between the light
beam and the optical axis (axis of the director), i.e., there is
no difference between negative and positive angles of the
director [Eq. (9)]. If only the deflection angle is taken into
account, this simplified analysis would predict the image of
the convection pattern to be half the wavelength of the
actual convection — a fact which sometimes produced wrong
results for measurements of the wavelength (Penz 1970). The
above analysis however shows that there is also a linear term
giving the image of the wavelength of the convection pattern,
namely the displacement of a light beam inside the cell. This
displacement has been calculated to be

" ]
14+n =

VO)—ye =20, - - cos (k yy)

and has the same period as the convection pattern. The
transition from an image with the wavelength of the convec-
tion pattern to an image looking almost like having half this
wavelength is shown in Fig. 11.

Equation (10) can be solved without approximations with
a Runge-Kutta integration. In Fig. 10 the resulting path of
the light in the cell is shown for a director angle exceeding
the validity range of the above approximations. We can see
the single periodicity of the deflection of the light beams
inside the cell and two real foci in similar distances from the
cell.

The distances between the foci can be calculated. The
transformation for y from x=0 to x=x, is given by
Vi=y(0)+y'(0) - (x; —0J) which yields for the intensity at
s e

peyit i1 (e (14)

(294 - 2 O)

0¥o CVo
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Fig. 12. The distance between the two real foci | and 2, and the real
and imaginary foci 2 and 3 as a function of the director angle; the
dashed lines belong to a sine as eigenfunction for the director angle
in x-direction with approximation for small angles and the solid
lines without approximation for the same eigenfunction; the dashed
dotted lines belong to an eigenfunction of Thom (1988) and the
dotted lines to an eigenfunction of Bodenschatz (1988)

The first caustics are at minimum distances x,; where the
denominator of Eq.(14) becomes zero. The analytical
calculations with the above equations for y(x) and y'(x)
yields for the distances between the planes of the real caustics
(2) and the virtual caustics (3)

4 4

1’1 e 2 . () ) 1 5
BTRE N G- (N—1)  Bo-7 k-(N—1) Ak

The distances between the planes of the two real caustics
IS:
8 i

with N = —— . (16)

I'1j=
28,k (N—1) {47

The inverse of the square root of I, and the inverse of I,
are shown in Fig. 12 (dashed lines). The solid lines in this
picture have been calculated with the numerical solution of
Eqg. (10) obtained by the Runge-Kutta integration.

If we take the x-dependence of the director angle as not
being a sine (as given by the Penz model) but rather the
correct solution obtained by a linear stability analysis at the
threshold (Thom 1988; Bodenschatz et al. 1988) we get the
dashed-dotted (Thom 1988) or the dotted lines (Bodenschatz
ct al. 1988) 1n Fig. 11. The two curves differ in the parameters
assumed for the liquid crystal (the parameter sets MBBA I
and MBBA Il in Bodenschatz et al. 1988). The distance
between the two real focal points secems to be especially
sensitive against variations of these parameters.
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IFig. 13. Intensity measured at the top of the cell for MBBA corre-
sponding to a cutoff frequency of 600 Hz; the cell height 1s 100 pm;
labels indicate the RMS-voltage applied with a frequency of
107 Hz

3.2 Experimental example for electrohydrodynamic
convection

For small deflections the path of the light beam inside the
liquid crystal layer can be approximated by a straight line
[orming an angle « with the x-axis. Using this approxima-
tion we can calculate the shadowgraph picture at the upper
boundary of the layer in the same way as in Sect. 2.2. The
angle « corresponds to

-

f

1
-« — + oS (k yy)

a = (y(O)—yp)o=2-8,- l4+4 =«

= a, * cos (k yg) -

By fitting the function (7a) at shadowgraph pictures of elec-
trohydrodynamic convection we can get from the parameter
%y the amplitude of the angle of the director:
w 14#

n

Gy =ty (17)
Experimental data obtained close to the top of the cell
and the fitted function for different voltages are shown for a
liquid crystal layer (MBBA) of 100 um thickness in Fig. 13.
The shape of the curves is the same as in the case of thermal
convection (Fig. 5) which indicates the accuracy of the con-
siderations we made for liquid crystals in Sect. 3.1.

The fit shown in Fig. 13 in principle contains the informa-
tion about the director angle, provided that the focal plane
of the microscope i1s known exactly with respect to the upper
boundary of the cell. With clean electrodes the exact deter-
mination of the position of the plane might become difficullt.
Thus in Fig. 14 we have only shown the deflection angle in
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Fig. 14. The deflection angle of the light as extracted from Fig. 13;
the solid line is a fit to a square root law giving a critical voltage of
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Fig. 15. The director angle measured in a 23 pm cell filled with
MBBA having a cutoff frequency of approximately 160 Hz; the
difference between the real and virtual foci are measured: the solid
Iime is the theoretical curve obtained from a nonlinear perturbation
expansion

arbitrary units, together with a fit to the expected square
root law behaviour.

A simple way to avoid the difficulty in absolute position-
Ing is to measure a relative length, namely the distance
between the two focal planes 2 and 3 (Fig. 10). The director
angle can be extracted from this measurement according to
the function presented in Fig. 12. This has been done in
Fig. 15. There is only a limited range where the procedure
works satisfactorily. If the voltage is too small the caustics
are hard to focalize, and for voltages too high, the time
dependent motion of the convection pattern sets in. From
the measurements a critical voltage at about 7.50 V can be
extrapolated. The parabola shown in Fig. 15 is the theoreti-
cal curve according to a weakly nonlinear stability analysis
(Bodenschatz et al. 1988).
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4 Conclusion

The shadowgraph method is a useful tool in convection
experiments even for quantitative aspects provided that the
eigenfunction is known. Two different kinds of experiments,
thermal and electrohydrodynamic convection, lead to simi-
lar shadowgraphic images close to the threshold. The differ-
ence between the two cases is the angle of the outgoing light
beam. In thermal convection it grows proportional to the
square root of the distance from the critical point, while in
EHC this angle grows linearily with this distance. With this
knowledge the shadowgraphic images can be used to extra-
polate the critical point for the onset of convection with high
precision.
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Technical notes

Azimuthal instability in jet diffusion flames

H. Eickhoff', A. Winandy' and R. Natarajan?

' DFVLR, Institut fiir Antrichstechnik D-5000 Ko6ln 90. FR Germany

2 Indian Institute of Technology, Madras, India

Transitional jet diffusion flames develop a structure of toroi-
dal vortices, which result from the instability of the jet shear
layer. In order to investigate the mechanism of transition in
the initial flow regime of such flames, a visualization study
of the flow structure in the inital region of the jet flames was
perfomed with hydrogen and methane as the fuel. The
burners were contured nozzles of 5 and 10 mm diameter and
of contraction ratio 50:1 and 12.5:1, respectively. The flow
structure was visualized by schlieren images and light sheets
perpendicular to the flow axis. A nanolight served as the
light source in a Toepler schlieren set-up, and for the light
sheet visualization scattering particles were produced by
atomizing water mixed with TiO,-powder.

Toroidal vortices, resulting from the instability of the
nozzle shear layer remain undisturbed over a distance which
decreases with increasing Reynolds number.

Schlieren images are shown for hydrogen-flames at differ-
ent conditions (Fig. 1). At the onset of disturbances the outer
boundary suddenly widens up with the spreading angle in-
creasing with increasing Reynolds number. The schlieren
images also reveal longitudinal streaks occuring with the
sudden expansion which are similar to streamwise streaks
observed in a plane shear layer (Bernal and Roshko 1986).

Cross-sectional flow visualization by a light sheet reveals
a star-like pattern with predominantly six spokes. This is
shown, again for a hydrogen flame, in Fig. 2 at a height of
four nozzle diameters above the burner exit.

Methane flames, as opposed to hydrogen flames, are at-
tached to the burner only at moderate flow rates. However,

up to that burner exit velocity u,, at which a methane flame
lifts off, it exhibits an azimuthal flow structure similar to that
in hydrogen flames. Upstream from the base of a lifted meth-
ane flame, 1.¢. in the nonreacted methane jet, again a star-
like flow pattern is observed as seen 1n Fig. 3. This cross-
sectional view reveals more details of the inner structure in
the cold jet than can be seen in the flame from Fig. 2. This
might partly depend on too rapid vaporization of the light
scattering water droplets in the outer flame zone.

[n a study related to the present one on jet flames, a
similar, very well organized star-like structure and the for-
mation of radial jets were found in hot jets spreading in cold
air (Monkewitz et al. 1988; Lehmann and Barsikow 1988).

In those jets, very strong self-sustained periodical ring
vortices are produced due to absolute instability of the shear
layer, if the ratio of the density of the jet, to the density of the
surrounding fluid is below a critical value of 0.72 (Huerre
and Monkewitz 1985; Monkewitz and Sohn 1986). Monke-
witz et al. (1988) argue that the occurrence of a strongly
organized star-like flow pattern and the formation of radial
jets in the hot jet is due to azimuthal instability of the self-
substained periodical ring vortices.

Azimuthal instability also occurs in single impulsively
formed vortex rings, which was analysed by Widnall and
Sullivan (1973) on the basis of a linear theory. And a similar
star-like flow pattern was observed also in a cold air jet by
Yule (1978), who related this to a deformation of toroidal
vortices, resulting from Kelvin-Helmholtz-instability of the
nozzle shear layer. A sketch explaining qualitatively the dis-
cussed flow pattern in flames is shown in Fig. 4.



